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Abstract

High explosives in hostile environments will require calculational capabili-
ties that model processes, which evolve on timescales from minutes to nanosec-
onds. Eventually the HE will begin to move metal. To handle this temporal
evolution an implicit hydrodynamics coupled to the chemical release of the HE
energy is required. In addition, the use of chemical kinetics to model the tran-
sition from, the initially, slow heating of a confined high explosive through
to deflagration and on to detonation requires many computational zones to
model high explosive engineering systems. This requirement means that a
fully parallel implicit hydrodynamics is essential. In this paper we present the
calculation of a nonlinear matrix equation for the advanced particle pressure
that has been made parallel and implemented in our AMR code, BABBO. This
new parallel implicit hydrodynamics has been applied to a cookoff problem, as
well as, one and two dimensional shock problems. Results are presented and
discussed.
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1 Introduction
The central issue in spanning the timescales we encounter in our HE calculations is
to forgo the use of a Courant time step control in an explicit hydrodynamics. This
issue has been known for many years and many methods have been proposed. The
fundamental method to do this is to develop an implicit calculation of the advanced
particle pressure derived from the conservation laws of mass, momentum and energy
for the fluid1. The derivation is performed using a full advanced time step difference
representation of the conservation laws, which produces a matrix equation for the
advanced time pressure. It is also essential that the Equation-of-State for the fluid
be completely general. Both analytic, as well as, tabular EOS capabilities have to be
inherent in the solver. Because of the potentially massive calculations encountered,
the implicit solver must run in parallel, on all of the machine architectures we use
in our high explosives calculations. This requirement of parallelism has necessitated
that the solver be cast as a matrix equation; albeit, a nonlinear matrix equation,
which necessitates that an iterative solution of the matrix is used2.
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2 Operator Split Physics
Operator split physics is the sine qua non of multi-physics codes. Because of the
multi-physics nature of the calculations we perform in our physics codes, it has
become a standard procedure in the creation of these codes. This physics split
procedure, which has been used in the development of our explicit hydrodynamics
provides the ability to replace a simple EOS call to obtain the pressure, that requires
a Courant time step control, with an iterative matrix solve for the advanced pres-
sure that obviates the need for the Courant time step control. Either procedure to
obtain the pressure can be used in the calculation of the momenta, PDV work, and
subsequently the advection. It becomes necessary to change only one step in the hy-
drodynamics calculation. This fact also produces an ability to seamlessly transform
from an implicit hydrodynamics to an explicit hydrodynamics during a calculation.

In a typical HE simulation the split is represented as follows.
HE energy deposition

Arrhenius burn
Henson-Smilowitz chemical kinetics

Hydrodynamics
Pressure acceleration
Adiabatic work from fluid compression and expansion
Viscous dissipation
Advection

Thermal conduction
Implicit
Electron and ion

2.1 Full implicit Euler equations
The full implicit Euler equations are written using the advanced time step quantities
on the left-hand side of the equations for the advancement of density, velocities and
specific internal energy

dρ

dτ
= −ρn+1∇ · v⃗n+1 (1)

dv⃗

dτ
= − 1

ρn+1
∇P n+1 (2)

de

dτ
= −P n+1

ρn+1
∇ · v⃗n+1 (3)
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where the total time derivative is

d

dτ
≡ ∂

∂τ
+ v⃗ · ∇ (4)

Substituting the finite difference representation of the time derivative in equations
1-3 yields a set of implicit finite difference equations that advance the density, specific
internal energy and velocities from the n time step to the n+ 1 time step.

ρn+1 − ρn

δτ
= −ρn+1∇ · v⃗n+1 (5)

ρn+1 =
ρn

(1 + δτ∇ · v⃗n+1)
(6)

ρn+1 − ρn = −ρn
δτ∇ · v⃗n+1

(1 + δτ∇ · v⃗n+1)
(7)

v⃗n+1 − v⃗n

δτ
= − 1

ρn+1
∇P n+1 (8)

v⃗n+1 = v⃗n − δτ

ρn+1
∇P n+1 (9)

en+1 − en

δτ
= −P n+1

ρn+1
∇ · v⃗n+1 (10)

en+1 = en − P n+1

ρn+1
δτ∇ · v⃗n+1 (11)
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3 Calculation of the matrix equation for P n+1

To begin the calculation of the implicit matrix equation for the advanced pressure
take the divergence of equation 9

∇ · v⃗n+1 = ∇ · v⃗n −∇
(

δτ

ρn+1

)
·∇P n+1 −

(
δτ

ρn+1

)
∇2P n+1 (12)

From equation 6 write ∇
(

δτ
ρn+1

)
as

∇
(
δτ(1 + δτ∇ · v⃗n+1)

ρn

)
= −δτ(1 + δτ∇ · v⃗n+1)

(ρn)2
∇ρn +

δτ 2

ρn
∇(∇ · v⃗n+1) (13)

or

∇
(

δτ

ρn+1

)
= − δτ

(ρn)2
∇ρn − δτ 2

(ρn)2
∇ρn(∇ · v⃗n+1)− δτ 2

ρn
∇(∇ · v⃗n+1) (14)

Next write ∇ · v⃗n+1 to first order in δτ as

∇ · v⃗n+1 ≃ ∇ · v⃗n + δτ

(ρn)2
∇ρn ·∇P n+1 − δτ

ρn
∇2P n+1 (15)

If the Equation-Of-State is of the form P = Ψ(ρ, e), then at the n+ 1 time step

P n+1 = Ψ(ρn+1, en+1) (16)
Taylor series expanding about the n time step gives

P n+1 ≃ P n +
∂Ψ

∂ρ

∣∣∣∣
n

(ρn+1 − ρn) +
∂Ψ

∂e

∣∣∣∣
n

(en+1 − en) (17)

Substituting the equations for ρn+1 and en+1 obtain

P n+1 ≃ P n−∂Ψ

∂ρ

∣∣∣∣
n

δτρn∇ · v⃗n+1

(1 + δτ∇ · v⃗n+1)

−∂Ψ

∂e

∣∣∣∣
n

(1 + δτ∇ · v⃗n+1)

ρn
δτP n+1∇ · v⃗n+1

(18)

Defining, Di ≡ ∇ · v⃗i, equation 18 can be written as
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P n+1(1 + δτDn+1) = P n(1 + δτDn+1)− ∂Ψ

∂ρ

∣∣∣∣
n

δτρnDn+1

− ∂Ψ

∂e

∣∣∣∣
n

δτ
Dn+1

ρn
P n+1

− ∂Ψ

∂e

∣∣∣∣
n

2
(δτDn+1)2

ρn
P n+1

− ∂Ψ

∂e

∣∣∣∣
n

(δτDn+1)3

ρn
P n+1

(19)

Equation 15 can also be rewritten as

Dn+1 ≃ Dn +
δτ

(ρn)2
∇ρn ·∇P n+1 − δτ

ρn
∇2P n+1 (20)

Approximating δτDn+1 to order δτ 2, yields

(δτDn+1)1 ≃ δτDn +
δτ 2

(ρn)2
∇ρn ·∇P n+1 − δτ 2

ρn
∇2P n+1 (21)

(δτDn+1)2 ≃ (δτDn)2 (22)
(δτDn+1)3 ≃ 0 (23)

Therefore equation 19 becomes

P n+1(1 + δτDn+1) = P n(1 + δτDn+1)− ∂Ψ

∂ρ

∣∣∣∣
n

δτρnDn+1

− ∂Ψ

∂e

∣∣∣∣
n

δτ
Dn+1

ρn
P n+1

− ∂Ψ

∂e

∣∣∣∣
n

2
(δτDn)2

ρn
P n+1

(24)

Finally, substituting equation 20 into equation 24 and after some manipulation
the non-linear matrix equation for the advanced time pressure, P n+1 is
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− δτ 2

ρn

[
P n+1 − P n +

∂Ψ

∂ρ

∣∣∣∣
n

ρn +
∂Ψ

∂e

∣∣∣∣
n

P n+1

ρn

]
∇2P n+1

+
δτ 2

ρn

[
P n+1 − P n +

∂Ψ

∂ρ

∣∣∣∣
n

ρn +
∂Ψ

∂e

∣∣∣∣
n

P n+1

ρn

]
∇ρn

ρn
·∇P n+1

+

[
(1 + δτDn) +

∂Ψ

∂e

∣∣∣∣
n

δτ

ρn
Dn +

∂Ψ

∂e

∣∣∣∣
n

2

ρn
(δτDn)2

]
P n+1 =[

P n(1 + δτDn)− ∂Ψ

∂ρ

∣∣∣∣
n

ρnδτDn

]
(25)

3.1 Iteration procedure
Because of the non-linear nature of the matrix, equation 25 must be solved by iter-
ation. To do this, rewrite equation 25 as the ν + 1 iterate of that equation.

− δτ 2

ρn

[
P ν+1 − P n +

∂Ψ

∂ρ

∣∣∣∣
n

ρn +
∂Ψ

∂e

∣∣∣∣
n

P ν+1

ρn

]
∇2P ν+1

+
δτ 2

ρn

[
P ν+1 − P n +

∂Ψ

∂ρ

∣∣∣∣
n

ρn +
∂Ψ

∂e

∣∣∣∣
n

P ν+1

ρn

]
∇ρn

ρn
·∇P ν+1

+

[
(1 + δτDn) +

∂Ψ

∂e

∣∣∣∣
n

δτ

ρn
Dn +

∂Ψ

∂e

∣∣∣∣
n

2

ρn
(δτDn)2

]
P ν+1 =[

P n(1 + δτDn)− ∂Ψ

∂ρ

∣∣∣∣
n

ρnδτDn

]
(26)

To begin the iterations the P ν+1 terms in the matrix coefficients of the ∇2P ν+1

term and the ∇ρn ·∇P ν+1 term are replaced by P ν and the matrix is solved. The
initial guess is P ν = P n. Successive substitutions are performed until the pressures
converge to a solution, or when | P ν+1 − P ν | /P ν+1 < ε, where ε << 1.

3.2 Gamma law gas EOS
If the equation of state is of the form

P = Ψ(ρ, e) = (γ − 1)ρe (27)
then
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∂Ψ

∂ρ

∣∣∣∣
n

= (γ − 1)en (28)

∂Ψ

∂e

∣∣∣∣
n

= (γ − 1)ρn (29)

and equation 25 becomes

− δτ 2

ρn
[
γP n+1

]
∇2P n+1

+
δτ 2

ρn
[
γP n+1

] ∇ρn

ρn
·∇P n+1

+
[
1 + γδτDn + 2(γ − 1)(δτDn)2

]
P n+1 =

+ P n

(30)

Equation 30 is the actual equation that is solved for the γ law gas shock problems
in this report.
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4 Time step controls
Time step controls are imposed on the implicit hydrodynamics to ensure accuracy
in the calculation. The dominant controls that are relevant to the evolution of high
explosives are the energy and pressure changes fractions per time step. The energy
change time step control is critical when running with an Arrhenius or Henson-
Smilowitz HE energy production source. The Courant condition is not employed
in the implicit hydrodynamics. An advection velocity time step control is used to
ensure that a variable is not advected by more than half a zone size in a time step.
When the velocity is very small the overall time step can still be much larger than
the Courant time step. In addition, when the minimum time step is less than a
factor (greater than one) of the Courant time step the hydrodynamics can switch to
the standard explicit code hydrodynamics. If multi-species physics is required only
when near shock or shock conditions are realized this switch capability gives us the
immediate ability to utilize the multi-species capabilities associated with the explicit
hydrodynamics. As will be discussed in the summary section below, the multi-species
parallel implicit hydrodynamics is the next step in our development of the implicit
hydrodynamics.
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5 Calculational results
Figures 1-2 show the results of a calculation of a planar shock tube with two γ law gas
materials each with γ = 1.4, run with three AMR levels using the parallel implicit
hydrodynamics. The smallest zone size in the calculation is 0.125µm.

Figures 3-13 show the results of two calculations of the single level Frank-Kamenetskii
problem for HMX run with and without the parallel implicit hydrodynamics. In
each case a constant temperature of 220◦C was imposed on the outer boundary of
the problem and a zone size of 0.0002µm was used. Figure 4, in this series shows
the time step as a function of cycle. At 1634 cycles the energy deposition from the
Arrhenius burn becomes large and the time steps adjust accordingly. Figures 5-13
show the specific internal energy, burn fraction and velocity just before and just after
the explosive onset of the energy deposition from the Arrhenius burn for the Frank-
Kamenetskii problem run without (FK) and with (FK-IMPH) the parallel implicit
hydrodynamics. For each variable in the Frank-Kamenetskii problem run with the
parallel implicit hydrodynamics a later time in the calculation is also included.

Figures 14-27 show the results of a two-dimensional calculation of a two-material
spherical shock problem run with the explicit and the parallel implicit hydrodynamics
on sixteen processors, on a single AMR level with a zone size of 0.125µm. The
two materials are both γ law gasses with γ = 1.4. The material densities and
specific internal energies are ρ1 = 1.00× 10−3 g/cc, ρ2 = 2.00× 10−4 g/cc, e1 =
2.5182× 1021 erg/g and e2 = 2.5182× 1021 erg/g. What is displayed are contour
plots of density, Mach number and specific internal energy for the explicit and implicit
calculations at two different times. In Figure 27 there is a pronounced structure along
the 45◦ line, which is due to the fact that an elliptic equation is being solved for the
advanced pressure and the signal propagation speed is infinite. What is observed are
the effects of the boundary conditions on the solution.

Figures 28-34 show the results of a two-dimensional calculation of a two-material
shock problem using the parallel implicit hydrodynamics run with four AMR levels
on sixteen processors. The smallest zone size in the calculation is 0.125µm. The
initial setup of densities and specific internal energies is identical to the single level
two-dimensional shock problem. These results are presented to demonstrate the
ability of the parallel implicit hydrodynamics to run with multiple AMR mesh levels
on multiple processors.
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Figure 1: IMPH AMR mesh at 7.0× 10−4µs.
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Figure 2: IMPH AMR shock density at 7.0× 10−4µs.
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Figure 3: FK initial mesh HMX with 220◦ Celsius surface temperature.
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Figure 4: FK-IMPH time step vs cycle.
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Figure 5: FK Electron temperature before and after 1.62390× 108µs.
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Figure 6: FK-IMPH Electron temperature before and after 1.62251× 108µs.
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Figure 7: FK-IMPH Electron temperature at 1.62279× 108µs.

Figure 7 is a plot of the electron temperature at a time 2.8× 104 µs after the
explosive onset of the HE energy deposition. The higher temperatures on the sides
of the central peak are created by the shocks emanating from the region of the initial
energy burst. The central peak corresponds to the peak in Figure 6.
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Figure 8: FK Burn fraction before and after 1.62390× 108µs.
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Figure 9: FK-IMPH Burn fraction before and after 1.62251× 108µs.
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Figure 10: FK-IMPH Burn fraction at 1.62279× 108µs.
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Figure 11: FK HE velocity before and after 1.62390× 108µs.

Figure 11 is a plot of the velocity at a time just before and just after the explosive
onset of the HE energy deposition for the original Frank-Kamenetskii problem. Of
course, the velocity is zero before and after, since the original Frank-Kamenetskii
problem is run with Arrhenius burn, electron and ion thermal conduction and no
hydrodynamics.
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Figure 12: FK-IMPH HE velocity before and after 1.62251× 108µs.
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Figure 13: FK-IMPH HE velocity at 1.62279× 108µs.

Figure 13 is a plot of the velocity at a time 2.8× 104 µs after the explosive onset
of the HE energy deposition. The small oscillations in the plot mirrors the drive from
the initial onset of the velocity just after the burst of energy for the HE. The larger
spikes represent the shocks emanating from the region of the initial energy burst.
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Figure 14: Explicit calculation processor map.
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Figure 15: Implicit calculation processor map.
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Figure 16: Explicit material density.
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Figure 17: Implicit material density.
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Figure 18: Explicit material density.
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Figure 19: Implicit material density.
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Figure 20: Explicit Mach number.
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Figure 21: Implicit Mach number.
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Figure 22: Explicit Mach number.
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Figure 23: Implicit Mach number.
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Figure 24: Explicit specific internal energy density.
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Figure 25: Implicit specific internal energy density.

35



2-D Explicit and Implicit hydro shock results. LA-UR-XX-XXXXX

Figure 26: Explicit specific internal energy density.
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Figure 27: Implicit specific internal energy density.
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Figure 28: Implicit, 4-level, 16-processor mesh.
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Figure 29: Implicit, 4-level, 16-processor material number.
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Figure 30: Implicit, 4-level, 16-processor mesh.
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Figure 31: Implicit, 4-level, 16-processor material number.
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Figure 32: Implicit, 4-level, 16-processor density.
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Figure 33: Implicit, 4-level, 16-processor Mach number.
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Figure 34: Implicit, 4-level, 16-processor specific internal energy.
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6 Summary
Currently the parallel implicit hydrodynamics is modular, and runs in AMR with six
possible geometries; 1-D planar/cylindrical/spherical, 2-D planar/cylindrical and 3-
D planar. Both analytic and tabular Equations Of State are available in temperature
and energy mode. No explicit Courant time step condition is required, however an
accuracy time step control is used with the energy sources. In addition, implicit
electron and ion thermal conduction, which is critical in Deflagration to Detonation
Transition (DDT) simulations, is a part of the capability.

The next steps in the development of the parallel implicit hydrodynamics is to
generalize to multi-pressure mixtures and extend the multi-species capabilities for
low speed flow into the parallel implicit hydrodynamics, which will be compatible
with the current multi-species velocity capability in the explicit hydrodynamics. This
capability is needed, because species drift can occur in low speed flow and it has a
longer time to evolve. Therefore, when the flow becomes shocked you have in place
a mixture that was generated during the period of the low speed flow. Again, you
cannot calculate with a Courant time step in the low speed regime.

The implicit hydrodynamics currently runs in the AMR code, BABBO, with
mesh adaption, multi-phase advection, in both energy and temperature modes, and
with viscous dissipation.
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